Direkt zum Hauptbereich

Levels of AGI: Auf dem Weg zur künstlichen allgemeinen Intelligenz

Eine wegweisende Studie über die Definition und Bewertung von Künstlicher Allgemeiner Intelligenz (AGI) wurde von einem Team führender Forscher bei Google DeepMind verfasst. Das Autorenteam umfasst Meredith Ringel Morris, Jascha Sohl-dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksandra Faust, Clement Farabet und Shane Legg, die alle bedeutende Beiträge zum Feld der künstlichen Intelligenz und verwandten Disziplinen geleistet haben. Ihre Forschungsarbeit, betitelt "Levels of AGI: Operationalizing Progress on the Path to AGI", wurde im Januar 2024 aktualisiert und veröffentlicht, nachdem sie ursprünglich im November 2023 herausgegeben wurde. Diese Studie stellt einen signifikanten Fortschritt in der Diskussion und Konzeptionalisierung von AGI dar, indem sie ein Rahmenwerk für die Klassifizierung der Fähigkeiten und Verhaltensweisen von AGI-Modellen und ihren Vorläufern einführt, mit dem Ziel, Fortschritte auf dem Weg zur AGI messbar und vergleichbar zu machen.

Die Studie legt besonderen Wert auf sechs Kernprinzipien, die eine nützliche Ontologie für AGI definieren sollen. Diese umfassen die Konzentration auf die Fähigkeiten der KI statt auf die zugrundeliegenden Mechanismen, eine separate Bewertung von Allgemeinheit und Leistung sowie die Betonung der Entwicklung hin zur AGI durch definierte Stufen anstelle eines festen Endziels. Dieser Ansatz ermöglicht es, den Entwicklungsfortschritt von AGI-Modellen besser zu verstehen und zu operationalisieren.

Ein wesentliches Element der Studie ist die Einführung verschiedener Leistungsniveaus von AGI, von "Emerging" (auftauchend) bis "Superhuman" (übermenschlich), sowie die Unterscheidung der Breite der Fähigkeiten von "Narrow" (eng) bis "General" (allgemein). Diese Klassifizierung soll dabei helfen, den Entwicklungsstand von KI-Systemen präziser zu bewerten und den Forschungsfortschritt nachvollziehbar zu machen.

Ein zentraler Diskussionspunkt der Studie ist die Entwicklung zukünftiger Benchmarks zur Bewertung von AGI-Modellen. Die Forscher betonen die Notwendigkeit, echte menschliche Fähigkeiten in die Bewertung einzubeziehen, um eine realistische und faire Einschätzung der KI-Leistung zu gewährleisten. Dies unterstreicht die Herausforderung, einheitliche und aussagekräftige Maßstäbe für die Bewertung der Leistungsfähigkeit von AGI-Systemen zu finden.

Darüber hinaus betrachtet die Studie die Risiken, die mit der Entwicklung und dem Einsatz von AGI-Systemen verbunden sind. Die Autoren argumentieren, dass die Risikoabschätzung von AGI nicht nur die technischen Fähigkeiten der Systeme, sondern auch den Kontext ihres Einsatzes, einschließlich der Autonomieebene und der Interaktionsparadigmen zwischen Mensch und KI, berücksichtigen muss. Sie schlagen vor, die verschiedenen Ebenen der AGI und Autonomie in Kombination zu betrachten, um ein detaillierteres Verständnis der potenziellen Risiken und Chancen zu erlangen.

Die Studie unterstreicht die Bedeutung von interdisziplinärer Forschung und der Einbeziehung einer breiten Palette von Perspektiven bei der Gestaltung der Zukunft der künstlichen Intelligenz. Sie betont die Notwendigkeit eines verantwortungsvollen Umgangs mit der Entwicklung von AGI und plädiert für eine gemeinschaftliche Anstrengung, um die Potenziale dieser Technologie zu realisieren und gleichzeitig ihre Risiken zu minimieren.


Kommentare

Beliebte Posts aus diesem Blog

Googles Willow-Chip

Die Entwicklung von Quantenchips, einschließlich des Willow-Chips, stellt einen bedeutenden Fortschritt im Bereich des Quantencomputings dar, das die Prinzipien der Quantenmechanik nutzt, um Informationen zu verarbeiten. Die Geschichte des Quantencomputings lässt sich auf die theoretischen Grundlagen zurückführen, die in den 1980er- und 1990er-Jahren von Forschern gelegt wurden, wie zum Beispiel die Arbeiten von Wootters und Zurek im Jahr 1982 über Quantenverschränkung sowie von Aharonov und Ben-Or im Jahr 1997, die Quantenalgorithmen und Berechnungsmodelle untersuchten [ 1 ][ 2 ]. In den darauffolgenden Jahrzehnten wurden bedeutende Fortschritte in der Quantenhardware erzielt, insbesondere mit der Einführung von Ionenfallen- und supraleitenden Qubit-Technologien. Bis 2016 wurden bemerkenswerte Meilensteine erreicht, wie die Implementierung von hochpräzisen Quantenlogikgattern mithilfe von Ionenfallen-Hyperfeinqubits, die das Fundament für skalierbare Quantencomputersysteme legten [ 3 ...

Die humanoiden Roboter kommen

Die Entwicklung in der Herstellung humanoider Roboter hat aktuell weltweit für Aufmerksamkeit gesorgt. Diese Roboter, die menschenähnliche Eigenschaften besitzen, sind nicht mehr nur Stoff der Science-Fiction, sondern werden zunehmend in verschiedenen Bereichen der Gesellschaft und Industrie eingesetzt. Unternehmen wie Boston Dynamics , Hanson Robotics und SoftBank Robotics  und neuerdings Figure AI  stehen an der Spitze dieser Revolution und treiben den Fortschritt voran. Tesla verkündet Zahlen, die man jetzt noch nicht glauben möchte, weshalb sie hier nicht aufgeführt werden. S tatistisch gesehen verspricht die gesamte Industrie für humanoide Roboter ein exponentielles Wachstum. Laut neuen Berichten von Grand View Research wird der globale Markt für humanoide Roboter voraussichtlich bis 2027 ein Volumen von über 12 Milliarden US-Dollar erreichen.  Link Empfehlungen: Yahoo Finance: rasanter Wachstum des Marktes für humanoide Roboter Humanoide Roboter - der schleichende ...

Die angeblichen Grenzen der künstlichen Intelligenz

Die Vorstellung, dass künstliche Intelligenz auf eine begrenzte Menge an Informationen im Internet stößt, verkennt die umfangreichen Möglichkeiten, die humanoide Roboter mit KI bieten. Diese Roboter können Informationen nicht nur aus dem Internet, sondern auch aus ihrer physischen Umgebung sammeln und verarbeiten. Durch die Interaktion mit der realen Welt erhalten sie Zugang zu einer nahezu unerschöpflichen Quelle von Daten. Jede Beobachtung, Interaktion und Erfahrung erweitert ihren Informationspool und ermöglicht kontinuierliches Lernen und Anpassung. Auf diese Weise überschreiten humanoide Roboter die Grenzen der digitalen Welt und nutzen die immense Vielfalt und Tiefe der realen Welt, um ihre Fähigkeiten ständig zu verbessern. Darüber hinaus sind humanoide Roboter mit fortschrittlichen Sensoren ausgestattet, die es ihnen ermöglichen, eine Vielzahl von Umweltdaten zu erfassen – von visuellen Eindrücken über akustische Signale bis hin zu taktilen Empfindungen. Diese Daten sind dynami...