Direkt zum Hauptbereich

Leveraged Buyout auf Kosten der Belegschaft als Blaupause für die Finanzierung der großen KI Investitionen

Die Finanzierungstechnik, bei der ein Unternehmen durch Aufnahme von Schulden (oftmals durch den Käufer) erworben wird und anschließend die Schulden auf das übernommene Unternehmen abgewälzt werden, wird als "Leveraged Buyout" (LBO) bezeichnet. Bei einem Leveraged Buyout nutzen Private-Equity-Firmen oder Investoren Fremdkapital, um die Mehrheit oder alle Anteile eines Unternehmens zu erwerben. Das Ziel ist, das Unternehmen später mit Gewinn zu verkaufen, nachdem es "restrukturiert" wurde, was häufig durch Kostensenkungen, vor allem Personalabbau, erreicht wird. Die dabei entstehende hohe Verschuldung wird auf das Zielunternehmen übertragen, was erheblichen Druck auf dessen Cashflow und Betriebskapital ausübt.
  • Ein bekanntes Beispiel ist Toys "R" Us, das 2005 für rund 6,6 Milliarden US-Dollar von Bain Capital, KKR & Co. und Vornado Realty Trust übernommen wurde. Die daraus resultierende Schuldenlast von etwa 5 Milliarden US-Dollar führte schließlich 2017 zum Konkurs des Unternehmens und zur Entlassung von etwa 31.000 Mitarbeitern im Jahr 2018.
  • iHeartMedia, Inc., übernommen im Jahr 2008 von Thomas H. Lee Partners und Bain Capital, erlebte ähnliche Herausforderungen. Die Übernahme führte zu einer Schuldenlast von über 20 Milliarden US-Dollar. Im Jahr 2018 musste iHeartMedia Insolvenz anmelden, und im Januar 2019 wurden zahlreiche Mitarbeiter entlassen, um Kosten zu senken und die Schulden zu bewältigen.
Leveraged Buyout ist die Blaupause für die unvorstellbaren Investitionssummen in die KI. Das Geld, das aus allen Bereichen der Wirtschaft in die neue Technologie gepumpt wird und dessen Rückzahlung und Zinsen später wieder beglichen werden müssen, wird von den Arbeitnehmern bezahlt werden.



Kommentare

Beliebte Posts aus diesem Blog

Googles Willow-Chip

Die Entwicklung von Quantenchips, einschließlich des Willow-Chips, stellt einen bedeutenden Fortschritt im Bereich des Quantencomputings dar, das die Prinzipien der Quantenmechanik nutzt, um Informationen zu verarbeiten. Die Geschichte des Quantencomputings lässt sich auf die theoretischen Grundlagen zurückführen, die in den 1980er- und 1990er-Jahren von Forschern gelegt wurden, wie zum Beispiel die Arbeiten von Wootters und Zurek im Jahr 1982 über Quantenverschränkung sowie von Aharonov und Ben-Or im Jahr 1997, die Quantenalgorithmen und Berechnungsmodelle untersuchten [ 1 ][ 2 ]. In den darauffolgenden Jahrzehnten wurden bedeutende Fortschritte in der Quantenhardware erzielt, insbesondere mit der Einführung von Ionenfallen- und supraleitenden Qubit-Technologien. Bis 2016 wurden bemerkenswerte Meilensteine erreicht, wie die Implementierung von hochpräzisen Quantenlogikgattern mithilfe von Ionenfallen-Hyperfeinqubits, die das Fundament für skalierbare Quantencomputersysteme legten [ 3 ...

Die humanoiden Roboter kommen

Die Entwicklung in der Herstellung humanoider Roboter hat aktuell weltweit für Aufmerksamkeit gesorgt. Diese Roboter, die menschenähnliche Eigenschaften besitzen, sind nicht mehr nur Stoff der Science-Fiction, sondern werden zunehmend in verschiedenen Bereichen der Gesellschaft und Industrie eingesetzt. Unternehmen wie Boston Dynamics , Hanson Robotics und SoftBank Robotics  und neuerdings Figure AI  stehen an der Spitze dieser Revolution und treiben den Fortschritt voran. Tesla verkündet Zahlen, die man jetzt noch nicht glauben möchte, weshalb sie hier nicht aufgeführt werden. S tatistisch gesehen verspricht die gesamte Industrie für humanoide Roboter ein exponentielles Wachstum. Laut neuen Berichten von Grand View Research wird der globale Markt für humanoide Roboter voraussichtlich bis 2027 ein Volumen von über 12 Milliarden US-Dollar erreichen.  Link Empfehlungen: Yahoo Finance: rasanter Wachstum des Marktes für humanoide Roboter Humanoide Roboter - der schleichende ...

Die angeblichen Grenzen der künstlichen Intelligenz

Die Vorstellung, dass künstliche Intelligenz auf eine begrenzte Menge an Informationen im Internet stößt, verkennt die umfangreichen Möglichkeiten, die humanoide Roboter mit KI bieten. Diese Roboter können Informationen nicht nur aus dem Internet, sondern auch aus ihrer physischen Umgebung sammeln und verarbeiten. Durch die Interaktion mit der realen Welt erhalten sie Zugang zu einer nahezu unerschöpflichen Quelle von Daten. Jede Beobachtung, Interaktion und Erfahrung erweitert ihren Informationspool und ermöglicht kontinuierliches Lernen und Anpassung. Auf diese Weise überschreiten humanoide Roboter die Grenzen der digitalen Welt und nutzen die immense Vielfalt und Tiefe der realen Welt, um ihre Fähigkeiten ständig zu verbessern. Darüber hinaus sind humanoide Roboter mit fortschrittlichen Sensoren ausgestattet, die es ihnen ermöglichen, eine Vielzahl von Umweltdaten zu erfassen – von visuellen Eindrücken über akustische Signale bis hin zu taktilen Empfindungen. Diese Daten sind dynami...