In der Physik wurden John Hopfield und Geoffrey Hinton für ihre Arbeiten an neuronalen Netzwerken ausgezeichnet. Was auf den ersten Blick wie eine algorithmische Errungenschaft aussieht, ist tief in den Prinzipien der Physik verwurzelt. Hopfield entwickelte in den 1980er Jahren das erste Modell eines neuronalen Netzwerks, das auf der Suche nach einem energiearmen Zustand agiert. Diese Methode beruht auf einem physikalischen Konzept, das aus der statistischen Mechanik stammt, und ermöglicht es dem Netzwerk, assoziative Verknüpfungen zu erlernen. Wie Teilchen, die sich in einem System zu einem möglichst energiearmen Zustand bewegen, lernt das neuronale Netzwerk durch die Gewichtung von Knoten Verbindungen zu stärken oder zu schwächen. Dies ist nicht nur eine physikalisch inspirierte Methode, sondern auch der Grundstein für maschinelles Lernen.
Hinton ging einen Schritt weiter und nutzte das Boltzmann-Gesetz, das beschreibt, wie Systeme bestimmte Zustände je nach Energie bevorzugen. Auf dieser Basis entwickelte er die sogenannte Boltzmann-Maschine, ein neuronales Netzwerk, das mit Wahrscheinlichkeiten arbeitet. Die Einführung dieser statistischen Methode ermöglichte generative Modelle, die heute in vielen Bereichen Anwendung finden, von der Sprachverarbeitung bis hin zur Bilderzeugung. Was Hinton und Hopfield also schufen, war nicht nur ein Werkzeug für die Informatik, sondern ein auf physikalischen Prinzipien basierendes Modell, das die KI-Forschung revolutionierte.
Ähnlich tiefgreifend ist der Beitrag der diesjährigen Nobelpreisträger im Bereich der Chemie. Demis Hassabis und John Jumper von Google DeepMind entwickelten das KI-System AlphaFold, das die Faltung von Proteinen mit beispielloser Genauigkeit vorhersagen kann. Diese Vorhersage galt lange als einer der größten Herausforderungen der Proteinchemie, da die dreidimensionale Struktur eines Proteins für seine Funktion entscheidend ist. AlphaFold nutzt neuronale Netzwerke, um die Faltung allein aus der Aminosäuresequenz vorherzusagen – eine Aufgabe, die mit herkömmlichen Methoden Jahre in Anspruch nahm. Durch den Einsatz von KI konnte dieser Prozess auf Minuten verkürzt werden. Dass dies nun mithilfe neuronaler Netzwerke möglich ist, zeigt, wie stark KI und die biochemische Forschung miteinander verwoben sind.
Auch hier sind es wieder physikalische Prinzipien, die den Erfolg der KI möglich machen. Neuronale Netzwerke wie AlphaFold basieren auf den Wechselwirkungen zwischen Aminosäuren, die in der Proteinkette miteinander interagieren. Das KI-System lernt anhand von hunderttausenden bekannten Proteinstrukturen, wie sich diese Wechselwirkungen auf die Faltung der Kette auswirken. Dabei ist es in der Lage, Muster in den Daten zu erkennen und vorherzusagen, welche Form ein Protein annehmen wird. Dieser Prozess ähnelt den statistischen Methoden, die Hinton für die Boltzmann-Maschine verwendet hat, und ist ein weiteres Beispiel dafür, wie physikalische Modelle in die Chemie und Biologie integriert werden können.
Doch warum erfährt KI gerade jetzt so viel Aufmerksamkeit? Die Antwort liegt in einer Reihe von technologischen Fortschritten, die in den letzten Jahren zusammengekommen sind. Erst die steigende Rechenleistung und die Verfügbarkeit großer Datensätze machten es möglich, dass KI-Modelle wie AlphaFold oder neuronale Netzwerke in der Physik überhaupt funktionieren können. In der Physik und Chemie fallen heute immense Datenmengen an, sei es bei der Analyse von Teilchen in der Hochenergiephysik oder bei der Erforschung von Biomolekülen in der Biochemie. KI bietet die Möglichkeit, diese Datenmengen zu verarbeiten und Muster zu erkennen, die menschliche Forscher kaum identifizieren könnten.