Die Vision einer KI, die sich selbstständig verbessert, ist nicht mehr nur Science-Fiction, sondern rückt dank neuer Forschung immer näher. Modelle wie "RStar Math", entwickelt von Microsoft, demonstrieren eindrucksvoll, wie kleine Sprachmodelle (Small Language Models, SLMs) durch sogenannte Recursive Self-Improvement (RSI) ihre Fähigkeiten iterativ erweitern können. Dabei wird das klassische Paradigma, bei dem große Modelle ihr Wissen auf kleinere übertragen (Model Distillation), obsolet. Stattdessen generieren diese kleinen Modelle eigenständig hochqualitative Trainingsdaten und optimieren sich autonom. Dies geschieht durch Methoden wie Monte-Carlo-Baumsuchen und das neuartige Prozesspräferenzmodell (PPM), das korrekte Lösungsansätze priorisiert und ineffiziente ausschließt. Die Leistungsfähigkeit solcher Ansätze ist beeindruckend: In Benchmark-Tests konnte die mathematische Genauigkeit von RStar Math von 58,8 % auf 90 % gesteigert werden. Bereits in der zweiten Iteration ü...