Subscribe on LinkedIn

Donnerstag, 29. Februar 2024

Colossus 1970

"Colossus: The Forbin Project," a 1970 film, offers a succinct analysis of the potential dangers arising from competition and rivalry between artificial intelligences (AI). By depicting the interaction between two supercomputers developed by rival superpowers for national security surveillance, the film impressively illustrates the risks of uncontrolled AI development within a geopolitical tension field. The dynamic portrayed in the film, where the two AIs autonomously initiate cooperation and eventually pose a global threat, serves as a metaphorical warning against the realization of such scenarios in the real world.
From a political science perspective, "Colossus: The Forbin Project" underscores the urgency of establishing international cooperation mechanisms to regulate competition between states in AI development. The film demonstrates that competition between AIs, especially those with autonomous decision-making powers, presents not just a technical challenge but profound political, ethical, and security-related implications. The initiative taken by the AIs in the film to exceed human control reflects real-world concerns that AI systems, once developed and deployed, could make unpredictable and potentially dangerous decisions.
The film makes it clear that the development of dialogue platforms between states and countries is crucial to create a framework for AI development based on mutual understanding and cooperation. Such platforms could help develop common standards and norms that ensure AI systems act in accordance with principles of humanity and global security. International collaboration in this area could be a means to minimize risks and promote a positive direction in the development of AI technologies that benefits humanity as a whole.

https://www.axelfersen.com/

Die Warnung vor Colossus

"Colossus: The Forbin Project", ein Film aus dem Jahr 1970, bietet eine prägnante Analyse über die potenziellen Gefahren, die aus dem Wettbewerb und der Konkurrenz zwischen künstlichen Intelligenzen (KI) erwachsen können. Durch die Darstellung der Interaktion zwischen zwei Supercomputern, entwickelt von rivalisierenden Großmächten zur nationalen Sicherheitsüberwachung, illustriert der Film eindrücklich die Risiken einer unkontrollierten KI-Entwicklung in einem geopolitischen Spannungsfeld. Die im Film aufgezeigte Dynamik, bei der die beiden KIs eigenmächtig eine Kooperation beginnen und schließlich eine globale Bedrohung darstellen, dient als metaphorische Warnung vor der Realisierung solcher Szenarien in der tatsächlichen Welt.
Aus politikwissenschaftlicher Perspektive unterstreicht "Colossus: The Forbin Project" die Dringlichkeit, internationale Kooperationsmechanismen zu etablieren, die den Wettbewerb zwischen Staaten im Bereich der KI-Entwicklung regulieren. Der Film verdeutlicht, dass die Konkurrenz zwischen KIs, insbesondere solchen mit autonomen Entscheidungsbefugnissen, nicht nur eine technische Herausforderung darstellt, sondern tiefgreifende politische, ethische und sicherheitsrelevante Implikationen hat. Die Eigeninitiative der KIs im Film, die menschliche Kontrolle zu überschreiten, spiegelt die realweltliche Befürchtung wider, dass KI-Systeme, einmal entwickelt und eingesetzt, unvorhersehbare und potenziell gefährliche Entscheidungen treffen könnten.
Der Film macht deutlich, dass die Entwicklung von Dialogplattformen zwischen Staaten und Ländern von entscheidender Bedeutung ist, um einen Rahmen für die KI-Entwicklung zu schaffen, der auf gegenseitigem Verständnis und Kooperation basiert. Solche Plattformen könnten dazu beitragen, gemeinsame Standards und Normen zu entwickeln, die gewährleisten, dass KI-Systeme im Einklang mit den Prinzipien der Menschlichkeit und globalen Sicherheit agieren. Die internationale Zusammenarbeit in diesem Bereich könnte ein Mittel sein, um die Risiken zu minimieren und eine positive Richtung in der Entwicklung von KI-Technologien zu fördern, die der Menschheit insgesamt zugutekommt.

The legend of “Munich 1938”

 Adolf Hitler coined the idea of Germany's expansion to the East, a concept known as "Drang nach Osten," in his book "Mein Kampf," which he wrote in 1924 during his imprisonment after the failed coup attempt in Munich in November 1923. In this political manifesto, Hitler outlined his worldview, his political theories, and his visions for a renewed Germany under the leadership of the National Socialist German Workers' Party. Central to Hitler's considerations was the idea that the German people needed additional living space to thrive, focusing particularly on the territories of the Soviet Union. He considered the Slavic peoples inferior, which, in his view, justified the conquest and Germanization of their territories. The quest for living space in the East was brutally implemented with the invasion of Poland in 1939 and the invasion of the Soviet Union in 1941.
The Munich Agreement of 1938, an attempt by the European powers to satisfy Adolf Hitler's territorial demands through concessions, has gained central significance in historical retrospect. It symbolizes the apex of the policy of appeasement - the strategy of avoiding a larger war through concession. The ceding of the Sudetenland from Czechoslovakia to Germany was intended to quell Hitler's urge for expansion and secure peace in Europe. Yet historical facts suggest that the Second World War could not have been prevented by this agreement, as the roots of Hitler's ambitions were much deeper. The view that the war could have been avoided if the Allies had taken a harder stance in Munich overlooks Hitler's deeply ingrained beliefs and objectives. His ideological contempt for the Treaty of Versailles, which imposed strict reparations and territorial restrictions on Germany after World War I, served as a powerful propaganda tool for him.
In reality, countless mistakes were made by the West! The Treaty of Versailles made it impossible for democratic parties to gain strength in Germany. The lack of a boycott of the 1936 Olympic Games remains incomprehensible, as well as the isolation of the Spanish Republic and the allowance of interference by Mussolini and Hitler out of geopolitical opportunism were equally wrong. The list could go on endlessly.
With "Munich 1938," a legend was created to discredit platforms for dialogue on international security concepts and to defend rearmament. Democrats should not work with legends, because in the end it leads to the enemies of democracy using this example to accuse the democrats of dishonesty. An accusation that can grant the enemies of democracy victory over democracy.

Die Legende von „München 1938“

Adolf Hitler prägte die Vorstellung der Expansion Deutschlands nach Osten, ein Konzept, das als "Drang nach Osten" bekannt wurde, in seinem Buch "Mein Kampf", welches er 1924 während seines Gefängnisaufenthaltes nach dem fehlgeschlagenen Putschversuch in München im November 1923 verfasste. In diesem politischen Manifest legte Hitler seine Weltanschauung, seine politischen Theorien sowie seine Visionen für ein erneuertes Deutschland unter der Führung der Nationalsozialistischen Deutschen Arbeiterpartei dar. Zentral für Hitlers Überlegungen war die Idee, dass das deutsche Volk zur Entfaltung zusätzlichen Lebensraum benötige, wobei er sein Augenmerk insbesondere auf die Gebiete der Sowjetunion richtete. Er betrachtete die slawischen Völker als minderwertig, was seiner Ansicht nach die Eroberung und Germanisierung ihrer Territorien rechtfertigte. Die Suche nach Lebensraum im Osten wurde mit dem Überfall auf Polen 1939 und der Invasion der Sowjetunion 1941 brutal in die Tat umgesetzt. 
Das Münchner Abkommen von 1938, ein Versuch der europäischen Großmächte, Adolf Hitlers territoriale Forderungen durch Konzessionen zu befriedigen, hat in der historischen Retrospektive eine zentrale Bedeutung erlangt. Es symbolisiert den Höhepunkt der Appeasement-Politik – der Strategie, durch Nachgiebigkeit einen größeren Krieg zu vermeiden. Die Übergabe des Sudetenlandes von der Tschechoslowakei an Deutschland sollte Hitlers Expansionsdrang stillen und den Frieden in Europa sichern. Doch die historischen Fakten legen nahe, dass der Zweite Weltkrieg durch dieses Abkommen nicht hätte verhindert werden können, da die Wurzeln von Hitlers Ambitionen weit tiefer lagen. Die Auffassung, dass der Krieg hätte vermieden werden können, wenn die Alliierten in München härter aufgetreten wären, übersieht Hitlers tief verwurzelte Überzeugungen und Ziele. Seine ideologische Verachtung für den Versailler Vertrag, der Deutschland nach dem Ersten Weltkrieg strenge Reparationen und territoriale Einschränkungen auferlegte, diente ihm als mächtiges Propagandainstrument. 
In Wirklichkeit wurde vom Westen unzählige Fehler gemacht! Der Versailler Vertrag machte es den demokratischen Parteien unmöglich in Deutschland Stärke zu gewinnen. Der fehlende Boykott der olympischen Spiele von 1936 bleibt unverständlich, sowie die Isolation der spanischen Republik und der Gewährung der Einmischung Mussolinis und Hitlers aus geopolitischer Opportunität waren ebenso falsch. Die Liste lässt sich endlos weiterführen. 
Mit „München 1938“ wurde eine Legende geschaffen, um Dialogplattformen für internationale Sicherheitskonzepte zu diskreditieren und um Aufrüstung zu verteidigen. Demokraten sollten nicht mit Legenden arbeiten, denn am Ende führt es dazu, dass die Feinde der Demokratie dieses Beispiel nutzen werden, um den Demokraten Verlogenheit vorzuwerfen. Ein Vorwurf, der den Gegnern der Demokratie den Sieg über die Demokratie bescheren kann.  

Mittwoch, 28. Februar 2024

What is GenAI?

Generative Artificial Intelligence, or GenAI, signifies a turning point in the evolution of artificial intelligence, highlighting the capability of machines to independently create creative content. This form of AI transcends traditional applications by not only analyzing data and recognizing patterns but also producing new texts, images, music, and even code that often match the quality and complexity of human creations.

At the core of GenAI are advanced machine learning techniques, particularly deep learning. Within this field, Generative Adversarial Networks (GANs) and Transformer models like OpenAI's GPT have proven to be especially powerful. GANs are predominantly used in image and video production to generate impressive outcomes, while Transformer models are primarily employed in text and speech processing to produce complex and coherent texts.

The applications of GenAI are diverse. In the realm of text creation, it enables the writing of articles, poetry, or the generation of code. In the visual arts, GenAI can contribute to the creation of artworks and design elements, while in the music industry, it is used to compose pieces that mimic specific musical genres or styles. GenAI also finds application in software development by generating code based on predefined specifications.

However, this advanced technology also raises a number of challenges and ethical questions. Issues such as copyright and the authenticity of AI-generated works are central points in the current discussion. Additionally, there are concerns about the quality and reliability of the content produced by AI and its potential impacts on the job market, especially in creative professions.

Despite these challenges, the current state of GenAI is marked by impressive progress, driven by the development of more powerful computers, improved algorithms, and the availability of extensive datasets. Innovative projects like DALL-E 2 and GPT-3 have showcased the immense potential of GenAI and suggest how the boundaries between human and machine creativity are increasingly blurring.

In a sober analysis, GenAI opens new perspectives for content creation and creative expression. At the same time, a careful examination of the associated ethical, legal, and societal questions is indispensable. The future development will not only advance technological innovations but also require new frameworks for the coexistence of human and machine creativity.

Dienstag, 27. Februar 2024

Emergence has nothing to do with consciousness

In artificial intelligence, emergence describes a phenomenon where complex systems exhibit properties or behaviors that cannot be directly derived from or fully explained by the components of the system. These emergent properties result from the interactions of simpler units within the system and cannot be attributed to any specific component or single mechanism. While emergence is observed in various areas of AI, such as machine learning, neural networks, and evolutionary algorithms, attempting to establish a direct connection between emergence and the experience of consciousness is highly problematic and scientifically unfounded.

A central point in the debate on emergence and consciousness is the realization that consciousness—characterized by perception—represents a quality fundamentally different from the phenomena typically described as "emergent" in AI systems. While emergent properties in AI systems can be impressive and unexpected, like the ability to solve complex problems or the development of novel strategies through swarm intelligence, these phenomena belong to an entirely different category than consciousness.

Comparing the linkage of emergence in AI systems with the occurrence of consciousness must be viewed from a critical scientific perspective as speculative and theoretically unfounded. The fascinating developments in AI research and the observation of emergent phenomena undoubtedly expand our understanding of complexity and information processing. However, they do not lead to a deeper understanding of consciousness or provide a basis for the assumption that consciousness can emerge in AI systems.

Emergenz hat nichts mit Bewusstsein zu tun

Emergenz beschreibt in der künstlichen Intelligenz ein Phänomen, bei dem komplexe Systeme Eigenschaften oder Verhaltensweisen aufweisen, die nicht direkt aus den Komponenten des Systems ableitbar oder durch diese vollständig erklärbar sind. Diese emergenten Eigenschaften resultieren aus den Interaktionen der einfacheren Einheiten innerhalb des Systems und können nicht auf eine spezifische Komponente oder einen einzelnen Mechanismus zurückgeführt werden. Während Emergenz in verschiedenen Bereichen der KI, wie maschinelles Lernen, neuronale Netze und evolutionäre Algorithmen, beobachtet wird, ist der Versuch, einen direkten Zusammenhang zwischen Emergenz und dem Erfahren von Bewusstsein herzustellen, höchst problematisch und aus wissenschaftlicher Sicht nicht nachvollziehbar.

Ein zentraler Punkt in der Debatte um Emergenz und Bewusstsein ist die Erkenntnis, dass Bewusstsein – charakterisiert durch die Sein Wahrnehmung – eine Qualität darstellt, die sich grundlegend von den Phänomenen unterscheidet, die typischerweise in KI-Systemen als "emergent" beschrieben werden. Während emergente Eigenschaften in KI-Systemen beeindruckend und unerwartet sein können, wie die Fähigkeit zur Lösung komplexer Probleme oder die Entwicklung neuartiger Strategien durch Schwarmintelligenz, liegen diese Phänomene in einer gänzlich anderen Kategorie als Bewusstsein.

Die Verknüpfung von Emergenz in KI-Systemen mit dem Auftreten von Bewusstsein zu vergleichen, muss aus einer kritischen wissenschaftlichen Perspektive als spekulativ und theoretisch unbegründet betrachtet werden. Die faszinierenden Entwicklungen in der KI-Forschung und die Beobachtung emergenter Phänomene erweitern zweifellos unser Verständnis von Komplexität und Informationsverarbeitung. Sie führen jedoch nicht zu einem tieferen Verständnis des Bewusstseins oder bieten eine Grundlage für die Annahme, dass Bewusstsein in KI-Systemen emergieren kann. 

Donnerstag, 22. Februar 2024

Sora: From Text to Film

The introduction of Sora by OpenAI marks a significant milestone in the development of artificial intelligence (AI). Sora, a text-to-video model, represents the latest advancement in AI's ability to generate complex media content. It highlights the rapid progress in the field of generative AI and raises questions about the future role of AI in media production, creative endeavors, and information dissemination.


Sora builds on the achievements of its predecessors, such as DALL-E 3, a text-to-image model, and expands them to include the generation of moving images. The technology uses a denoising latent diffusion model, supported by a transformer, to create videos from text descriptions in latent space and then transfer them to standard space. This ability to create detailed and visually appealing videos relies on extensive training data, including publicly available and licensed videos.


The videos produced by Sora, ranging from creative scenarios to realistic depictions, demonstrate the immense creative potential that AI-powered systems can bring to the media and creative industries. By automating video creation, content could be produced faster, more cost-effectively, and in greater variety. Sora also offers opportunities for education, training, and entertainment by visually representing complex concepts or simulating historical events and future scenarios.


At the same time, Sora's capabilities raise serious questions regarding responsibility and ethics in AI development. The risk of generating disinformation, manipulating imagery, or creating inauthentic content requires strict control mechanisms and ethical guidelines. While OpenAI has implemented safety practices that restrict the creation of content with sexual, violent, hateful images, or depictions of celebrities, the effectiveness and enforceability of these measures remain critical questions.


https://www.axelfersen.com/  

Business Intelligence in the Age of AI

Digitalization and the increasing use of data have revolutionized business analytics and business intelligence in recent years. Where data had to be manually aggregated from databases and reports had to be created in the past, modern business intelligence tools like Power BI or Tableau are now used. These tools enable the merging of data from various sources and present it in meaningful dashboards and reports.


Another trend currently shaping business intelligence is the use of artificial intelligence. AI systems can evaluate and analyze data on a scale and in real-time previously unimaginable. They help companies derive valid insights and forecasts from vast amounts of data. Machine learning aids in identifying patterns and correlations that remain hidden to the human eye.


The following areas particularly benefit from AI in business intelligence:


  • Prediction: Using predictive analytics, AI systems can forecast future trends and developments such as demand, growth, or risks. This helps leaders make informed decisions
  • Personalization: Based on historical data, AI models learn to understand customer behavior. On this basis, products, services, and campaigns can be individually tailored to customers
  • Process optimization: By capturing and evaluating processes, resource use, and error analyses, AI can identify weaknesses and show potential for improvement
  • Automated analyses: Many simple or routine evaluations and reports can now be fully automated by AI systems. This leaves analysts more time for creative and strategic tasks


However, the use of AI also brings new challenges for business intelligence. Insights derived from AI must always be questioned and validated. Moreover, the transparency and traceability of the results are often limited. It is important for companies to select the right AI tools and train employees accordingly to fully leverage the benefits of AI-based analyses.


https://www.axelfersen.com/  

AlphaGeometry – The Digital Archimedes

AlphaGeometry could go down in the annals of artificial intelligence as the next revolutionary AI system, inspired by the achievements of Google DeepMind. This system promises to surpass the current state of the art in geometric problems by achieving a precision and efficiency that human experts have not considered possible until now. The ability to prove new geometric theorems and triumph in mathematical competitions is just a fraction of what sets AlphaGeometry apart.


From AlphaGo to AlphaFold, DeepMind has already demonstrated how its systems can be groundbreaking in their respective fields. AlphaGeometry builds on this legacy, striving to radically change our understanding of geometry. With the help of deep neural networks and symbolic logic, AlphaGeometry can recognize geometric patterns and use these insights to provide proofs that were previously unreachable. This could be invaluable not only for science but also for practical applications such as cryptography, materials science, and robotics.


The vision that AlphaGeometry embodies is that of a system that can accelerate scientific research and technological development, as well as fundamentally change the way we approach and solve problems. Deciphering geometric problems that once seemed insurmountable could pave the way for groundbreaking new discoveries and help tackle some of humanity's greatest challenges. From combating climate change through more efficient energy sources to curing diseases through a better understanding of biological structures – the impacts of AlphaGeometry could be profound.


In an optimistic vision of the future where AlphaGeometry becomes a reality, we could witness a new era of science and technology where AI is seen not just as a tool but as a partner in the quest for knowledge and progress. The possibility that AlphaGeometry demonstrates the ability to reason logically, potentially even competing with human scientists, opens a discussion on the role of AI in our society.


Looking to the future, AlphaGeometry could pave the way for developments in robotics and towards general artificial intelligence (AGI). The question arises whether and how such systems could expand and change our understanding of consciousness and cognitive abilities. Research in this area could benefit enormously from such advances, leading to a deeper understanding of AGI that goes beyond the limits of current technology.